Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

UDC 654.1:621.396.7
DOI https://doi.org/10.32782/2663-5941/2025.4.1/06

Ikhsanov Sh.M.
Admiral Makarov National University of Shipbuilding

Diakonov O.S.
Admiral Makarov National University of Shipbuilding

IMPLEMENTATION OF A REAL DATA TRANSMISSION CHANNEL
BASED ON A SINGLE ADALM-PLUTO SDR PLATFORM

The paper analyzes the challenges of incorporating hardware platforms for software-defined radio (SDR)
systems into the educational process while studying a range of disciplines related to electrical communication
theory and the design of digital wireless systems.

Clearly, the use of these hardware platforms for educational purposes when studying wireless communication
systems offers several advantages, such as a visual demonstration of how a radio system functions, the ability
to conduct supplementary experiments related to radio wave propagation taking into account the hardware’s
drift characteristics, and so on.

The active learning module from Analog Devices, ADALM PLUTO SDR, was chosen as the hardware
platform for the laboratory stand.

1t is noted that in order to effectively study digital signal processing principles, a program framework should
be created that includes the initialization code for the hardware platform, as well as the basic functionality of
digital processing units used in real-world communication systems.

Using the demo programs provided with the MATLAB software, it has been demonstrated that they require
significant refinement in order to create a working radio communication system.

Two signal processing approaches have been developed during the implementation of a QPSK-modulated
data transmission system in order to address time synchronization issues.

A software implementation is provided for determining an additional shift in the signal constellation using
Barker codes. This functionality can be used after initial synchronization and decoding to make a decision on
whether to shift the signal constellation by a multiple of 90 degrees.

The results of the operation of the developed programs are presented, which demonstrate acceptable
frequency shift reduction when synchronizing the receiver and transmitter within the same hardware platform
ADALM PLUTO SDR. The shift estimation error is 0.01-0.03 Hz.

An analysis of the operation of an algorithm for estimating the frequency shift in the phase of a signal at
different signal-to-noise ratios is presented. The operation of two synchronization algorithms (the algorithm for
choosing between even and odd samples and the symbolic synchronization algorithm) for several transmitter
power levels is also analyzed.

The data obtained allows us to conclude that error-free information transmission is possible in the data
transmission channel under consideration with a signal-to-noise ratio of approximately 10 dB.

Key words: ADALM PLUTO SDR, Software-Defined Radio, QPSK, symbol synchronization, phase
synchronization, Education, Communication systems, Modulation.

Formulation of the problem. To study wireless
data transmission technologies more deeply, it is
necessary to introduce software-defined radio (SDR)
hardware platforms into the educational process,
allowing for the implementation of a real communi-
cation channel with all digital signal processing units.

Analysis of recent research and publications.
The recent development of SDR receivers and trans-
mitters has made it possible to approach the study of
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digital wireless communications on a more advanced
level. In [6], the authors shared their experience in
creating a course that focuses on the practical aspects
of synchronization, including automatic gain control,
frequency offset, and synchronization — common
challenges in real-world communication systems.
The article [5] explores the technical specifications
of the ADALM-PLUTO SDR hardware platform and
its suitability for setting up laboratory exercises on
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receiving FM signals and designing radar systems.
The authors in paper [4] propose a methodology for
learning the fundamentals of radio transmitters and
receivers through practical experiments with com-
mercial SDR modules. Therefore, it can be concluded
that, for a deeper understanding of the fundamentals
of wireless communication system operation, the use
of computer simulations has a less tangible benefit
than the use of dedicated SDR hardware platforms.

Task statement. The aim of the work is to
develop a software-defined radio data transmission
system based on the MATLAB software product and
the ADALM-PLUTO SDR hardware platform from
Analog Devices. This lab setup can be used for stud-
ying advanced topics in wireless data transmission.

Outline of the main material of the study. The
ADALM-PLUTO SDR Active Learning Module is
an easy-to-use tool that is based on the AD9363 chip
[1, 2]. It has one receiving channel and one data trans-
mission channel that operate in the frequency range
of 325 MHz to 3.8 GHz with a sampling frequency
of 65 kHz to 61 MHz, and a bandwidth of 200 kHz
to 20 MHz for the tunable channel. Quadrature infor-
mation is transmitted between the platform and PC
via USB 2.0 interface. A 12-bit analog-to-digital con-
verter (ADC) is used. With special settings, the oper-
ating frequency range can be expanded from 70 MHz
to 6 GHz [2]. The external and internal views of the
platform are shown in Figure 1.

Support for the ADALM-PLUTO software-de-
fined radio (SDR) hardware platform is available in
MATLAB [3]. The following MATLAB demonstra-
tion programs are available:

— plutoradioQPSK TransmitterExample.m;

— plutoradioQPSKReceiverExample.m;

— plutoradioWLANTransmitReceiveExample.m.

In turn, these projects are based on the use of the
Communications System Toolbox Support Package
for ADALM-PLUTO Radio [3]. The programs can
be used with Matlab versions R2017 and above. The
plutoradioWLANTransmitReceiveExample project
was designed to run on a single ADALM-PLUTO
SDR and functions normally. As indicated by the
names of the first two programs, they enable informa-
tion exchange between two ADALM-PLUTO SDR
platforms. Unfortunately, this project was initially
introduced in Matlab R2017 and not operated prop-
erly. There are software errors when connecting to the
hardware platform, and information is almost always
completely distorted on the receiver. The project
version presented in Matlab R2019 performs some-
what better, but a reliable channel between the two
ADALM-PLUTOs is still not established. Typically,
bit error rate (BER) ranges from 0.1 to 0.3 regard-
less of the signal-to-noise ratio (SNR). The program
transmits the phrase “Hello, world” with numbers
from 000 to 999.

The final result of the program is as follows:

Error rate is = 0.162003.

Number of detected errors = 444083.

Total number of compared samples = 2741200.

It can be assumed that the final phase correction
of the signal with a multiplicity of 90 degrees was not
implemented or was implemented with errors. This
type of signal processing will be discussed below.

Implementation of the transmitting program
and organization of information reception. This
is one of the initializations of the ADALM-PLUTO
SDR platform used in the plutoradioWLANTransmi-
tReceiveExample.m program:

a)

b)

Fig. 1. The external (a) and internal (b) views of ADALM-PLUTO SDR
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% Init ADALM PLUTO SDR:

USB = ‘usb:0’;

deviceNameSDR = ‘Pluto’; % Set SDR Device
radio = sdrdev(deviceNameSDR); % Create SDR
device object

radio.RadioID = USB;

% Init transmitter:

sdrTransmitter = sdrtx(deviceNameSDR); % Create
transmitter object

sdrTransmitter.RadioID = USB;

% Init receiver:

sdrReceiver = sdrrx(deviceNameSDR); % Create
receiver object

sdrReceiver.RadioID = USB;

In most real-world information transmission chan-
nels, signals are sent in bursts of a relatively short
duration, at the start of which a synchronization pulse
is usually transmitted for receiver time synchroniza-
tion. The Barker code, with a maximum length of 13,
is often used for this purpose. Barker codes have a
minimum side lobe level in the autocorrelation func-
tion of 1/N, where N is the length of the code.

% Create random data :

M=4;

infSize = 2710;

txInf = randi([@ M-1],1,infSize);

% Insert Barker code before data packet:
Barkere = [1,1,1,1,1,-1,-1,1,1,-1,1,-1,1];
% Bipolar Barker Code
BL=1length(Barkero);
Barker=3*(1-Barkero)/2;
using symbols [0,3]
txInf = [Barker,txInf]’;
% Generate QPSK Signal:
symbol order=’gray’;% ‘bin’(default)/’gray’
ini_phase@=pi/4; % initial phase in rad before
transmitting

txWaveform = pskmod(txInf,M,ini_phase@, symbol
order);

% Set the signal parameters”

% Resample the transmit waveform at 400 KHz

fs = 100e3; % Transmit sample rate in Hz

osf = 4; % Oversampling factor - QPSK
sdrTransmitter.BasebandSampleRate = fs*osf;
sdrTransmitter.CenterFrequency = 1.8500e9;
sdrTransmitter.ShowAdvancedProperties = true;
sdrTransmitter.Gain = -40;

% coding [1,-1]

The only thing that is more or less fundamental in
this context is the value of the quantization frequency
of the signal. This determines the duration of a single
symbol, which is set to 10 microseconds in this exam-
ple. Other parameters can be adjusted within acceptable
limits for the ADALM-PLUTO SDR platform. The
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duration of a symbol can also be changed, but this may
significantly affect the characteristics of the channel.

Aprepared signal must pass through a Square-Root
Raised Cosine Filter, implementing as an upsampling
FIR-filter:

% Generate square root raised cosine transmit
filter:
RCFiltSpan = 10; % Filter span of Raised
Cosine Tx Rx filters (in symbols)
SquareRootRaisedCosineFilterOrder =
osf*RCFiltSpan;
RollOff = 0.5;
hTxFilt = fdesign.interpolator(osf,
‘Square Root Raised Cosine’, osf, ..
‘N,Beta’, SquareRootRaisedCosineFilt
erOrder, RollOff);
hDTxFilt = design(hTxFilt, ‘SystemObject’, true);
TransmitterFilterCoefficients = hDTxFilt.
Numerator/2;
% Filter and resample transmit waveform:
TransmitterFilter = dsp.FIRInterpolator(osf,Tr
ansmitterFilterCoefficients);
txWaveform = TransmitterFilter(txWaveform);

The filter used in this experiment has a length of
41 samples. The filter coefficients for this filter are
shown in the following graph (Fig. 2).

The filter increases the quantization frequency by a
factor of 4. Therefore, for each of the 1037 bits (13 bits
from the Barker code and 1024 information bits), four
complex samples are generated in the program. The
total number of samples prepared is therefore 4148.
Additionally, the signal payload is padded with a
pause equal to 1/16th of the signal’s length payload
and is transmitted continuously (in a cyclic manner):

% Add pause to signal payload:
kPause=infSize/4; % Since there are 4 samples
per symbol, the pause is 1/16 of the duration
of the signal

txWaveform(end+1:end+kPause)=0;
PacketLen=1length(txWaveform);

% Cyclic infinite signal transmission:
sdrTransmitter.transmitRepeat();

At the receiver, the signal is received within the
time required to receive a certain number of copies
of the transmitted message. We will set the reception
time so that at least three packets of information are
received. Now, we do not need to artificially introduce
a frequency shift. It is enough to separate the frequen-
cies of the transmitter and receiver. This is done in the
program using the df parameter. The receiver uses the
same quantization frequency as the transmitter.
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Fig. 2. Upsampling FIR-filter unnormalized impulse response

df=20000; % Shift of the receiver carrier
frequency relative to the transmitter (Hz)
sdrReceiver = sdrrx(deviceNameSDR);
sdrReceiver.RadioID = USB;
sdrReceiver.BasebandSampleRate =
sdrTransmitter.BasebandSampleRate;
sdrReceiver.CenterFrequency = sdrTransmitter.
CenterFrequency+df;

sdrReceiver.GainSource = ‘AGC Slow Attack’
sdrReceiver.OQutputDataType = ‘double’;
kPacket=4; %

sdrReceiver.SamplesPerFrame =
PacketLen*kPacket;

% The transmitted waveform is captured using
the PlutoSDR

burstCaptures = sdrReceiver();
bCaptAbs=abs(burstCaptures);

% Received signal magnitude:

plot(bCaptAbs);

Automatic gain control slow attack is set for the
received signal. The length of the received frame is
17616 complex samples, which includes the pause.
The emitted signal has a length of 4404 samples. The
magnitude of the received signal is shown in Fig. 3a.

The figure shows the pauses between message
packets and significant unevenness in the magnitudes
of the received signal, even within a single packet.

Primary elimination of the frequency shift
across the signal spectrum. The received signal is
passed through a 2-fold step-down receiving FIR-fil-
ter and, before the zones of individual packets are
allocated, it enters the first stage of eliminating fre-
quency shift. At this stage, the frequency shift will be
estimated from the signal spectrum using the FFTFre-
qSynchr() function:

function [ dfest ] =
SampleRate)
% yM - the signal after removing information
phase jumps %(usually by exponentiating the
signal)
% SampleRate - quantization frequency in Hz
% dfest - frequency shift in Hz
Fs = SampleRate;
LyM=length(yM); % Signal spectrum
NFFT = 2”nextpow2(LyM); % number of FFT
filters
FM=Ffft(yM,NFFT); % spectrum
dFFT=Fs/NFFT; % FFT Filter Arrangement (Hz)
f=(0:dFFT:Fs-dFFT)’; % frequency axis marking
FMmod=abs(FM); % Magnitude spectrum of the
signal
% Define filter with maximum magnitude
[ FMmodmax , kmax J=max (FMmod) ;
FMmod=FMmod/FMmodmax; % Normalization of the
signal to the
% maximum
% Draw a parabola through the maximum point of
the spectrum and
% two adjacent samples (filters (1) and
f(NFFT) are adjacent)
if kmax == 1

p=polyfit([-dFFT £(1:2)°]’,[FMmod(NFFT)
FMmod(1:2)°1°,2);
else

f1=f-f(kmax-1); % shifting the frequency
axis to facilitate
% calculations in the least squares method

if kmax == NFFT

p=polyfit([f1(NFFT-1:NFFT)’
f1(NFFT)+dFFT]’, ...
[FMmod (NFFT-1:NFFT)’

FFTFreqSynchr(yM,

FMmod(1)]’,2);
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Fig. 3. Received signal magnitude (a), The spectrum of the fourth degree of the received signal (b)

else
p=polyfit(f1(kmax-1:kmax+1),FMmod(kmax-
1:kmax+1),2);
end
end
dfest=-p(2)/(2*p(1)); % Estimation of
displacement as
% the vertex of a parabola:
if kmax > 1
dfest=dfest+f(kmax-1);
end
if dfest > Fs/2
dfest=dfest-Fs;
end
end

All functions used in this article were developed
by the authors. In each specific case, the use of MAT-
LAB library functions is described.

% Measuring and eliminating frequency shift:
SampleRate=sdrReceiver.BasebandSampleRate/2;
RxLen=1ength(RCRxSignal);

dt=1/SampleRate;

t=(0:dt:dt*RxLen-dt)’;

RCRxSignalM = RCRxSignal.”M;

dfestSP = FFTFregSynchr(RCRxSignalM,
SampleRate)/M;
fprintf(‘dfestSPo=%.4f.\n’,dfestSP);
omeg=-2*pi*dfestSP;

RCRxSignal = RCRxSignal.*exp(li*omeg*t);
FrameLen = length(RCRxSignal);

The spectrum of the fourth degree of the signal
for the entire frame is shown in Figure 3b. Instead of
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the interval [0, Fs], the spectrum is now linked to the
interval [-Fs/2, Fs/2].

The shift estimate was -0.0138 Hz, which indi-
cates a good match between the frequencies of the
transmitter and receiver in the same ADALM PLUTO
SDR device. With this signal-to-noise ratio, there are
no bit errors in the channel. As with modeling, the
estimate is practically independent of the signal-to-
noise ratio.

Reducing the power of the transmitted signal by
14 dB leads to a spectrum as shown in Fig. 4a, with
a BER of 10!,

For this spectrum, the estimated offset was
-0.162 Hz. Adjusting the receiver frequency to the
right should lead to the observation of a negative
offset four times the difference, while adjusting to
the left would lead to a positive offset. Indeed, when
shifting to +20 kHz with good signal power (transmit-
ter signal attenuation of 40 dB), we see the following
spectrum of the fourth degree of the signal (Fig. 4b).

Our signal is observed at -4:20 kHz, as expected.
The appearance of a signal at 20 kHz is associ-
ated with pauses between packets, and it is located
100 kHz away from the main signal. In the spectrum
of the signal, this distance is 25 kHz, in accordance
with the ratio of packet length and pause. The esti-
mated frequency offset was -20000.96 Hz, with a
slight increase in discrepancy relative to the previous
case, probably due to nonlinearities in the hardware
implementation of ADALM PLUTO SDR.

Allocation of zones using a convolution signal
with a Barker code. Zones are assigned using the
ConvBarker function.
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Fig. 4. The spectrum of the 4th degree of the received signal when the power is reduced by 14 dB (a),
the spectrum of the 4th degree of the received signal when the receiver frequency is shifted by 20 kHz (b)

% Convolution with a Barker code:
ConvSignal = ConvBarker(RCRxSignal,ReceivOsf);

The text of the ConvBarker()function is as
follows:
function ConvSignal =
ReceivOsf)
%% Convolution function of a complex signal
with a Barker code
% ReceivOsf - the number of samples per symbol
in the received signal
% (Oversampling factor for received signal)
Barkere = [1,1,1,1,1,-1,-1,1,1,-1,1,-1,1]; %
Bipolar Barker Code
BL=1ength(Barkero);
BL2 = ReceivOsf*BL;
Barker2=1:BL2; % Multiplying the Barker code
by the number of samples per symbol:
for i=1:BL
Barker2((i-1)*ReceivOsf+1:i*ReceivOsf)=
Barkere(i);
end
% Convolution as the product of a row per
column:
FrameLen = length(RCRxSignal);
ConvSignal=(1:FramelLen-BL2+1)’;
for i=1:FramelLen-BL2+1
ConvSignal(i) =
Barker2*RCRxSignal(i:i+BL2-1);
end
end

ConvBarker (RCRxSignal,

The result of the convolution process is shown in
Figure 5. Now, the beginning of each packet is clearly
visible, and we can easily determine the number of

packets. To do so, it is sufficient to call the specially
designed SearchPackets() function.

[Mind, kFoundPackets] = SearchPackets(ConvAbs,
kPacket,PacketLen,kPause);

The text of the package search function is as fol-
lows:

function [Mind,kFoundPackets]
(ConvAbs,n,PacketLen, kPause)
%% A function for searching for packets with
the Barker code at

% the beginning ConvAbs - the amplitude of the
complex signal

= SearchPackets
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Fig. 5. The result of the convolution of the received
information packets with the Barker code
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% convoluted with the Barker code
% n - number of packets to search for
% PacketLen - packet length, kPause - pause
between packets
% kFoundPackets - number of packets found
% Mind - packets start indexes
Pgs=8; % threshold for the Barker convolution
relative to the
% signal area (dB)
Pgp=15; % threshold for the Barker convolution
relative to the
% pause zone (dB)
ConvLen=1ength(ConvAbs);
% Searching for a set number of maximum
samples in a signal:
[MConvSignal,Mind] =
fewmax(ConvAbs,n,PacketLen);
gs(1:n)=0; % the ratio of the maximum reading
to the average
% level in a packet (dB)
gp(1:n)=0; % the ratio of the maximum count to
the average level
% in the pause (dB
kFoundPackets=0;
for i=1:n
i1=Mind(i)+1; i2=il+PacketLen-2;
j2=11-2; jl=max(j2-kPause/2+1,1);
if 12 <= ConvlLen
gs(i)=20*logl@(MConvSignal(i)/
mean(ConvAbs(il:i2)));
else
qs(1)=0;
end
if j2-j1 >=0
gp(i)=20*1logl@(MConvSignal(i)/
mean(ConvAbs(j1:32)));
else
qp(1)=0;
end
fprintf(‘qs=%0.2f, qp=%0.2f\
n’,qs(i),qp(i));
if gp(i) >= Pgp & qgs(i) >= Pgs
kFoundPackets = kFoundPackets+1;
Mind(kFoundPackets) = Mind(i);
end
end
Mind = Mind(1:kFoundPackets); Mind =
sort(Mind);
End

First of all, we note that the function searches for
packets of known length with a given pause length
between them. The program input receives the ampli-
tude of the signal convoluted with the Barker code.
First, the beginning of each packet is determined
by the maximum samples. To do this, the fewmax()
function is written, which searches for a given num-
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ber of maximum elements in a valid array. To avoid a
situation where there may be several maxima on one
packet, the maximum found is excluded from further
search along with PacketLen samples on the right and
dl (assumed to be 5) samples on the left. The num-
ber of required maxima corresponds to the maximum
number of packets that can be received in one frame.
The main criterion for selecting a packet is a suffi-
cient level of convolution with the Barker code rela-
tive to the average level of packet magnitudes and the
presence of a sufficiently deep pause after the packet
(8 and 15 dB, respectively, recall that for the Barker
code used, the theoretical level of the side lobes does
not exceed 201g(1/13)=-22 dB).

After selecting packet zones to prevent exceeding
the dynamic range, the signal is normalized to the
average as well as calculating the average signal-to-
noise ratio in the pauses between packets. The last
characters in each packet are distorted by convolution
with a pause during filtering and so they should be
removed.

% Normalization of the signal to the average
level

% and deletion of the last characters:
RCRxSignal=RCRxSignal/mean(abs(RCRxSignal));
SignalM=RCRxSignal.”M;

NFFT=PacketLen@/4-5; % the last ~10 samples in
each packet of the RCRxSignal filtered array
are distorted

due to convolution with pause

NFFT1=2*NFFT;
SampleRate=sdrReceiver.BasebandSampleRate/4;

% Calculating the average signal-to-noise
ratio:

MeanNoise = CalcNoise(abs(RCRxSignal),Mind,kFo
undPackets,PacketLen,kPause);

Packet time synchronization (symbol synchro-
nization). Further processing is carried out separately
for each packet. If we build a signal constellation
for individual packets at this stage, we will see that
the signal, in addition to the resulting phase shift, is
practically scattered over the entire complex plane,
despite a significant SNR of about 14 dB (Fig. 6).

Itshould be noted that the program uses a 45-degree
rotation of the phase plane (in_phase( parameter), so
the centers of the symbols of the transmitted signal
are located on the bisectors of the coordinate quarters.

Let’s consider two signal processing options that
are aimed at eliminating time synchronization viola-
tions. In the first variant, we will use the MATLAB
comm.SymbolSynchronizer() function, in the second
variant, we will consider the method widely used in
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Fig. 6. The signal constellation of one of the packets before phase shift compensation
and time synchronization (a), the signal constellation of one of the packets after time synchronization
by the Matlab function comm.SymbolSynchronizer() (b)

practice to select the best of the 2 available samples
per symbol.

The time synchronization function (symbol syn-
chronization) is initialized as follows:

% Create symbol synchronizer

symSync = comm.SymbolSynchronizer( ...
‘SamplesPerSymbol’, 2,
‘DampingFactor’, sqrt(2)/2,
‘NormalizedLoopBandwidth’, ©.02);

We use it when there are two samples for each sym-
bol, and the function returns a signal with one sample
per symbol. Unfortunately, there are two minor flaws
with the function, which are easily fixed, fortunately.
The function does not work well on the first call, so
you will need to call it first before using its results.
Additionally, it gives you an extra first sample, which
we will remove. Working with the function is as fol-
lows:

% Symbol synchronizer:
if prRepead % the result is bad
PacketOpt® = symSync(Packet); % on the
first call.
prRepead=0;

end

PacketOptl = symSync(Packet); % removing
the shift

PacketOptl=PacketOptli(2:end); % by 1
symbol

Here, Packet is the complex samples in a packet
obtained after determining the boundaries of each
packet using the Barker code:

Packet=RCRxSignal(Mind(i):Mind(i)+NFFT1-1);

The result of the function is clearly visible on the
signal constellation (Fig. 6, b). All the symbols are
compactly assembled, leaving only a phase shift of
about 10 degrees.

To explain the second method, we will present the
signal constellation separately for even and odd sam-
ples. Since we have two samples per symbol, one of
them should be closer to the center of the transmitted
symbol, and therefore, more accurately convey infor-
mation about the symbol. This is clearly visible in the
signal constellation of even and odd samples (Fig. 7).

Here, all four symbols are compactly arranged for
even samples. The phase shift is slightly larger, if we
mean by the phase shift an angle of up to 45 degrees,
the rotation of which places the centers of gravity of
the groups of symbols along the bisectors of the coor-
dinate quarters. It is clear that this does not guarantee
the location of the groups of symbols in their quar-
ters, you may have to rotate the phase by an angle of
90, 180 or 270 degrees. At the same time, odd sam-
ples carry practically no information.

It remains for each packet to choose between even
and odd samples. In principle, this can be done using
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Fig. 7. The signal constellation of one of the packets for odd (a) and even (b) samples

the signal constellation or the unwrapped phase. We
believe that the simplest and most reliable approach
is to use the magnitude of the signal after removing
the phase wrap. Figure 8 shows the magnitude of the
4th degree of the signal for odd and even samples
separately for one of the packets. Note that different
scales were chosen for even and odd samples in this
figure.

To measure the preference for odd or even sam-
ples, we can look at the minimality of their variances.
In Figure 8, the ratio of odd symbol variance to even
sample variance was 3.45 for the magnitudes.

The software implementation of the decision is as
follows:

% Choosing between even and odd samples:
PacketM=SignalM(Mind(i) :Mind(i)+NFFT1-1);
PacketOddM=PacketM(1:2:end);
PacketEvenM=PacketM(2:2:end);
varOdd=var (abs(PacketOddM));
varEven=var(abs(PacketEvenM));
if varOdd <= varEven

prodd=1;
else

prodd=0;
end
Packet=RCRxSignal(Mind(i):Mind(i)+N

FFT1-1);
if prodd
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PacketMopt=PacketOddM;
PacketOpt=Packet(1:2:end);
Kvar=varkven/var0dd;
else
PacketMopt=PacketEvenM;
PacketOpt=Packet(2:2:end);
Kvar=varOdd/varEven;
End

Phase synchronization. After synchronizing the
symbols, we will once again estimate the residual fre-
quency shift for each packet, and for comparison, we
will do this both for the spectrum and for the phase:

% Calculating frequency shift from spectrum:

dfestSP = FFTFreqSynchr(PacketMopt,
SampleRate)/M;
% Calculating the frequency shift from the
unwrapped phase:

PacketOptM = PacketOpt.”M;

PhaseOpt = phaseCalc(PacketOptM);

dfestPH = PhaseFreqSynchr(PhaseOpt,
SampleRate)/M;

The phase rotation angle can be calculated based
on the center of gravity of the 4 groups of transmitted
symbols. We will use the MATLAB function comm.
CarrierSynchronizer(), which, in addition to the phase
synchronization, performs synchronization based on
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Fig. 8. Magnitude of one of the packets for odd (a) and even (b) samples

the carrier frequency shift. The function descriptor is
created as follows:

% Create frequency and phase synchronizer
carrSync = comm.CarrierSynchronizer( ...
‘DampingFactor’, 0.707,
‘NormalizedLoopBandwidth’,
‘SamplesPerSymbol’, 1,...
‘Modulation’,’QPSK’,
‘ModulationPhaseOffset’,’Auto’);

0.01,

To compare the symbol synchronization options,
the program implements the ability to process a frame
in parallel with both options. Therefore, the use of the
comm.CarrierSynchronizer() function looks like this:

if propt
fineCompPacketOpt
carrSync(PacketOpt);
Legend="0dd/Even’;
else
fineCompPacketOpt

carrSync(Packet
Optl);
Legend="Symbol Synchronizer’;
End

Figure 9 shows the packet signal constellations for
two implementations. If in the first implementation a
slightly better result was obtained using the Matlab
function comm.SymbolSynchronizer(), then in the
second implementation we see that its use led to the
scattering of some symbols, which is not observed
when using the choice of even/odd samples.

As mentioned above, the results obtained do not
guarantee that the phase shift has been completely
eliminated. Rotating the phase plane by multiples of
90 degrees would lead to the same qualitative signal
constellation. Using only the samples of the signal
alone, we would not be able to detect such rotations
in any way. This is where the Barker code, which is
placed at the beginning of each packet, comes to our
aid. To do this, we will need to decode the first 13 bits
using additional phase rotations of 0, 90, 180, and
270 degrees, and compare them to the Barker code
in use. The rest of the packet will be decoded using a
phase rotation that will result in the fewest errors. The
function that implements this process looks like this:

function [PhSp,mind] =
PhaseByBarker(BarkerIn,Barker)

%% The function of searching for phase
rotation

% by matching the Barker code:

% BarkerIn - received Barker code in QPSK
symbols

% Barker - initial Barker code in QPSK symbols
% PhSp - required phase rotation in radians

% mind - the number of error bits in the
Barker code

% for the selected rotation

M=4; % for QPSK

% Barker code conversion table for
0,pi/2,pi,3*pi/2 degree

% phase rotation

BarkerSp=[0,1,2,3; 130 2; 3210; 20 3 1];
BL=1ength(BarkerIn); BarkerInSp(1:M,1:BL)=0;
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Fig. 9. The signal constellation of the packet after phase synchronization by the comm.SymbolSynchronizer()
function (c) and the selection of even/odd samples (d); (a), (b) — before synchronization, respectively

dSp(1:M)=0;

for il=1:M

for j1=1:BL
BarkerInSp(il,jl)=BarkerSp(il,BarkerI

n(j1)+1);
end

[dSp(il),~] = biterr(BarkerInSp(il,:),Barker);

end

[mind, indPhSp]=min(dSp); PhSp=(indPhSp-

1)*pi/2;
End
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Recall that the original Barker bipolar code [1,1,1,1,1,-
1,-1,1,1,-1,1,-1,1] we encode with QPSK symbols 0, 3
and get the following sequence [0,0,0,0,0,3,3,0,0,3,3,0]
(0 corresponds to the 1st quarter, 1-2" quarter,
3-3 quarter and 2-4™ quarter in the Gray encoding that
we use). Now we need to create a table of symbol trans-
formations during phase rotations. In the program, it is
represented by the BarkerSp matrix, the i row of which
corresponds to the rotation of the phase counterclock-
wise by an angle of w/2*(i-1) radians.
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In the function, we count not symbol failures, but
bit failures for each rotation.

The function is called in the program after the
initial phase synchronization and decoding with the
following lines:

% Packet Demodulation:

rxInf = pskdemod(fineCompPacketOpt,M,ini_
phase@,symbol _order);
% Searching for phase rotation by matching the
Barker code:

BarkerIn=rxInf(1:BL);

[PhSp,mind] = PhaseByBarker(BarkerIn,Barker);

Now we can decode the packets taking into
account the phase rotation found:

% Demodulation of a packet after phase
rotation:

ini_phase=ini_phase®-PhSp;

rxInf = pskdemod(fineCompPacketOpt,M,ini_
phase, symbol_order);

Processing of received information is completed
by calculating the BER for each information packet:

NN = length(rxInf);

[numErr,BER] = biterr(txInf(1:NN),rxInf);
fprintf( ‘PhSp=%.0f rpagycos, min_d=%3d\
n’,PhSp*180/pi,mind);

fprintf( ‘numErr=%4d, BER=%7.5f\n\
n’,numErr,BER);

Before finishing the program we need to release
the ADALM PLUTO SDR platform and the objects
used:

% Release the state of sdrTransmitter,
sdrReceiver and objects:
release(sdrTransmitter);
release(sdrReceiver);
release(symSync);

release(carrSync);

Analysis of the program operation. To analyze
the operation of various blocks, we will run the pro-
gram twice with the same parameters at close time
intervals (Table 1).

The established frequency offset on the receiver of
50 Hz relative to the transmitter was estimated with
good accuracy (at the first launch the error was about
0.03 Hz, in the second case — less than 0.01 Hz).
This indicates good frequency matching between the
receiver and transmitter within the Pluto platform
due to the use of a single local oscillator for both the

receiver and transmitter. However, after reducing the
sampling frequency to 100 kHz, a small frequency
offset is recorded, not exceeding 0.4 Hz. Such a fre-
quency shift with the accepted symbol length and
packet duration has practically no effect on the char-
acteristics of information transmission. Moreover, it
will be further reduced by the function comm.Car-
rierSynchronizer(), which adjusts the frequency and
phase. To verify this, we will additionally measure
the frequency shift after the specified function. The
results of such a measurement in one of the program
launches are given below (dfestSP is the shift before
re-tuning, dfestSP1 is after) — Table 2.

The residual offset does not exceed 0.45 Hz.

The algorithm for estimating the frequency shift in
the signal phase with large SNR, which were imple-
mented in the above launches, gives approximately
the same shifts, however, with a decrease in signal
power, as in modeling, it produces unacceptable
results (the dfestPH parameter) — Table 3.

The energy of the signal during the second launch
was approximately 2 dB lower than the first, although
the time interval between the two launches was no
more than 10 seconds. This could be due to interfer-
ence or instability on the Adalm Pluto SDR platform.
Using the SymbolSynchronizer() function and an
algorithm to choose between even and odd sample
values resulted in completely error-free data trans-
mission. Additionally, odd samples were found to
be more effective for the first launch and even sam-
ples for the second launch. After the function comm.
CarrierSynchronizer() it had to rotate the phase by
180 degrees at the first start, and by 270 degrees in
the second case, regardless of the algorithm used.
This phase shift is the same for all packages within a
single launch.

In conclusion, it remains for us to compare the two
synchronization algorithms with lower SNRs. The
results are shown in Table 4.

As can be seen from the table above, in two starts
when the transmitter signal was attenuated to -48 dB,
the algorithm for choosing between even and odd
samples turned out to be about an order of magni-
tude worse in terms of BER, however, in the next two
starts when attenuating to -50 dB, the SNR dropped
significantly (about 9 and 12 dB). At 12 dB, the algo-
rithms equaled the BER level, and at 9 dB using the
SymbolSynchronizer() function led to the complete
destruction of the channel, while the automatic selec-
tion of even or odd samples provided an acceptable
level of failures that can be eliminated by other meth-
ods, in particular, using error correction codes. The
data obtained also allows us to conclude that error-
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Table 1
Program operation log
First launch Second launch

Generating QPSK transmit waveform at: Generating QPSK transmit waveform at:
Transmitter.SampleRate=400000 Hz Transmitter.SampleRate=400000 Hz
Transmitter.CenterFrequency=1850000000 Hz Transmitter.CenterFrequency=1850000000 Hz
Transmitter.Gain=-45 dB Transmitter.Gain=-45 dB
Starting a new RF capture at: Starting a new RF capture at:
Receiver.CenterFrequency=1850000050 Hz Receiver.CenterFrequency=1850000050 Hz
Receiver.GainSource=AGC Slow Attack Receiver.GainSource=AGC Slow Attack
dfestSP0=-49.9704.
Number of found packets =3 dfestSP0=-49.9924.

Number of found packets = 3
prOpt=0. % 0 - Symbol Synchronizer

prOpt=0. % 0 - Symbol Synchronizer
Packet #1,SNR=18.0 dB,prOdd=1,Kvar=3.32.
dfestSP=0.3391 Packet #1,SNR=16.9 dB,prOdd=0,Kvar=2.62.
PhSp=180 degrees, min_d= 0 dfestSP=-0.0116
numErr=0,BER=0.00000 PhSp=270 degrees, min_d= 0

numErr=0,BER=0.00000
Packet #2,SNR=18.2 dB,prOdd=1,Kvar=2.97.
dfestSP=0.5545 Packet #2,SNR=16.2 dB,prOdd=0,Kvar=3.93.
PhSp=180 degrees, min_d= 0 dfestSP=0.3297
numErr= 0,BER=0.00000 PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000
Packet #3,SNR=17.8 dB,prOdd=1,Kvar=3.16.
dfestSP=0.4120 Packet #3,SNR=16.1 dB,prOdd=0,Kvar=2.60.
PhSp=180 degrees, min d= 0 dfestSP=-0.1924
numErr= 0,BER=0.00000 PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000
prOpt=1. % 1 - Odd/Even choice

prOpt=1. % 1 - Odd/Even choice
Packet #1,SNR=18.0 dB,prOdd=1,Kvar=3.32.
dfestSP=0.3391 Packet #1,SNR=16.9 dB,prOdd=0,Kvar=2.62.
PhSp=180 degrees, min_d= 0 dfestSP=-0.0116
numErr= 0,BER=0.00000 PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000
Packet #2,SNR=18.2 dB,prOdd=1,Kvar=2.97.
dfestSP=0.5545 Packet #2,SNR=16.2 dB,prOdd=0,Kvar=3.93.
PhSp=180 degrees, min d= 0 dfestSP=0.3297
numErr= 0,BER=0.00000 PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000
Packet #3,SNR=17.8 dB,prOdd=1,Kvar=3.16.
dfestSP=0.4120 Packet #3,SNR=16.1 dB,prOdd=0,Kvar=2.60.
PhSp=180 degrees, min_d= 0 dfestSP=-0.1924
numErr= 0,BER=0.00000 PhSp=270 degrees, min d= 0

numErr= 0,BER=0.00000

Table 2

Program operation log

prOpt=0.

Packet #1,SNR=19.0 dB,prOdd=0,Kvar=4.19.
dfestSP=3.9517, dfestSP1=0.0966.

PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000

Packet #2,SNR=18.7 dB,prOdd=0,Kvar=5.84.
dfestSP=1.8721, dfestSP=0.3524.

PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000

Packet #3,SNR=18.7 dB,prOdd=0,Kvar=5.12.
dfestSP=1.7735, dfestSP=0.4296.

PhSp=270 degrees, min_d= 0

numErr= 0,BER=0.00000
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Table 3
Program operation log
SNR 16 dB SNR 9 dB
Packet #1,SNR=16.8 dB,prOdd=0,Kvar=3.56. Packet #1,SNR=9.0 dB,prOdd=0,Kvar=1.32.
dfestSP=-0.6092, dfestPH=-0.9937. dfestSP=-0.0094, dfestPH=82.6901.
PhSp=180 degrees, min_d= 0 PhSp=270 degrees, min_d= 2
numErr= 0,BER=0.00000 numErr= 20,BER=0.00970
Packet #2,SNR=16.6 dB,prOdd=0,Kvar=3.58. Packet #2,SNR=9.5 dB,prOdd=0,Kvar=1.39.
dfestSP=0.0151, dfestPH=1.0546. dfestSP=-1.0198, dfestPH=-10.3491.
PhSp=180 degrees, min d= 0 PhSp=270 degrees, min_d= 0
numErr= 0,BER=0.00000 numErr= 20,BER=0.00970
Packet #3,SNR=16.7 dB,prOdd=0,Kvar=3.80. Packet #3,SNR=9.5 dB,prOdd=0,Kvar=1.53.
dfestSP=-0.6271, dfestPH=-0.4760. dfestSP=-0.4988, dfestPH=6.4755.
PhSp=180 degrees, min_d= 0 PhSp=270 degrees, min_d= 0
numErr= 8 BER=0.00388 numErr= 2 ,BER=0.00097
Table 4
Results of comparison of synchronization algorithms
Number of errors Number of errors
SNR Symbol Odd/Even SNR Symbol Odd/Even
(dB) Synchronizer Choice (dB) Synchronizer Choice
Transmitter.Gain=-48 dB
17,0 0 0 14,7 0 5
16,9 0 1 15,8 1 1
16,3 0 7 15,6 0 3
Total: 0 8 Total: 1 9
Transmitter.Gain=-50 dB
9,3 1062 17 12,3 9 11
9,4 1061 7 12,3 6 6
8,2 1058 15 12,5 14 13
Total: 3181 39 Total: 29 30

free information transmission is possible in the con-
sidered data transmission channel with a SNR of
about 10 dB. Remind that in this case we are talking
about the SNR over the entire quantization frequency
range, so the SNR measured at the maximum of the
amplitude spectrum will be significantly higher.
Conclusions. The use of the ADALM PLUTO
SDR hardware and MATLAB software as a lab-
oratory stand allows us to explore all stages of

digital signal processing in the creation of mod-
ern software-defined wireless radio systems. This
paper demonstrates the creation of a QPSK-mod-
ulated data transmission system. Synchronization
algorithms for real data transmission systems are
presented. This technique can be used in the edu-
cation of university students in the framework of
educational programs in the field of telecommuni-
cations.
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Ixcanor LI.M., Issikonos O.C. PEAJII3ALIISI PEAJIBHOI'O KAHAJTY IIEPEJAUI JAHUX
HA BA3I OJIHIET IIJTAT®OPMHU ADALM-PLUTO SDR

Y pobomi awnanizyrtomecs numanHs 6RPOBAONCEHHSA 6 HABUANLHUL Npoyec anapamuux niameopm
NPOCPAMHO-8USHAUEHUX padiocucmem Npu 8USHEHHI YUKILY OUCYUNILIH, NOB8 A3AHUX 3 MEOPIEI0 eleKMPULIHO20
36 513Ky 1 n06Y006010 YUDPosux 6e30PoOmosUx cucmen.

OuesuoHo, wo BUKOPUCMAHHA 6 HABYANbHUX YINAX ANnApamuux niamgopm npu 6usYeHHi cucmem
0e30pomo6o2o 383Ky Mac psao nepeeaz, ceped AKUX — HAOYHA OeMoHcmpayis pobomu paldiocucmemu,
MOACTUBICIND NPOBOOUMU O00AMKOBI eKCNepUMeHmu, N08 A3aHi 3 O0CHIONCEHHAM NOWUPEHHS PadioX6Ulb,
8paxy8aHHs Opelqhy Xapakmepucmux anapamHoi Yyacmunu i m. n.

YV axocmi anapamnoi niamgopmu 0ns rabopamoproco cmendy 00paHull Mo0yib AKIMUBHO20 HABUAHHSL 8i0
xomnanii Analog Devices — ADALM PLUTO SDR.

3asnaueno, wo 011 eghekmusHo2o BUBYEHHSI NPUHYUNIE YUPPOBOI 00POOKU cueHalie Nnoguxen Oymu
CMBOpeHUll CKellem NPoSpamu, o 8KI04ac 8 cebe yacmuHu Kooy 3 iHiyiarizayii anapamuoi niamgopmu, a
MAaKONC MIHIMATbHUN QYHKYIOHAT O10KI8 YUPPOBOT 0OPOOKU, SKI BUKOPUCIOBYIOMBCS 8 PEAIbHUX CUCTEMAX.

Ha npuxnadi oemo-npoepam, axi nocmaensiomscs 3 naxkemom MATLAB, nokazano, wo éonu nompebyoms
Cymmeso2o 000npayio8anis 0isl peanizayii npayroyoi padiooucmemu.

B x00i peanizayii peanvnoi cucmemu nepeoaui danux 3 mooyuayicio QPSK pospobneni 0sa eapianmu
00pOOKU CUSHATLY, CHPAMOBAHI HA YCYHEHHs NOPYULEHHS 4aCO80i CUHXPOHIZayii.

Hagedeno npuxnao npoepamnoi peanizayii uy000 nputiHAmMms piuteHsi  4aCMmuHi 6U3HAYEHHS 000AMK0B020
3CY8Y CUSHANLHO20 CY3ip s Ha Kym kpamuuil 90 epadycis 3 gukopucmannsam kodie bapxepa. Jlanuii gpynxyionan
BUKOPUCTNOBYEMBCS NIC/ISL NEPBUHHOI CUHXPOHIZAYIL | 0eKOOYBAHHSL.

Ilpeocmasneni pesynomamu pobomu po3pooieHux npocpam, AKi 0eMOHCMPYIOMb NPULIHAMHE 36€0eHHs
ygcmom npu CUMXpOHIzayii nputimava i nepeoasaua 8 pamxax oowici anapammuoi naiamgpopmu ADALM
PLUTO SDR. Ilomunxa oyinku oanozo 3miwjenns cmanosums 0,01—0,03 I'y. Hasedeno amaniz pobomu
AneoOpuUMMY OYIHKU 3MIUEHHS 4acmoma no (asi CueHALy npu pizHux CniesioHouenHax cuenar/wym. Taxooic
NPOAHANi308aHO POOONY 080X AICOPUMMIE CUHXPOHIZAYIl (ancopumm eudOpy MidC NAPHUMU [ HENapHUMU
BIONIIKAMU T ANICOPUMM CUMBONbHOT CUHXPOHIZAYIL) OJis1 OeKIIbKOX pigHie nomyacHocmi nepedasaua. Ompumani
0ani maxooic 00360/1I0Mb 3POOUMU BUCHOBOK NPO MOJICIUBICIb Oe3noMUIKo80i nepedaui ingopmayii 6
PO32TAHYMOMY KAHALI nepedayi 0anux npu 8iOHOuLeHHi cueHan/nepeukooa oausvko 10 ob.

Knirouoei cnosa: ADALM PLUTO SDR, npoepamno-euznauerne padio, QPSK, cumeonvua cunxpouizayis,
azosa cunxponizayis, oceima, KOMYHIKAYIUHI cucmemu, MoOyIayis.
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